
108 

I G N I T I O N  AND INCENDIVIm OF SINGLE MICRON SIZE 
MAGNESIUM PARTICLES IRRADIATED BY A LASER BEAM 
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INTRODUCTION 

This paper descr ibes  an experimental study of the  i g n i t i o n  End incendivity 
c h a r a c t e r i s t i c s  of magnesium p a r t i c l e s  heated by intense rad ia t ion .  While many 
inves t iga t ions  have been concerned with determining Igni t ion  temperatures of m e t a l  
p a r t i c l e s ,  much of their work has been w i t h  the i g n i t i o n  of s ing le  particles by 
hot  gases.(&,2,2)* I n  d u s t  or hybrid flames, however, a large portion of the 
p a r t i c l e  ign i t ion  energy is Supplied through rad ia t ion .  Indeed, i n  a study of 
dus t  flames of aluminum and graphite,(?) the  contr ibut ion of rad ia t ion  vas esti- 
mated to be 30 t o  60 percent of the  t o t a l  i g n i t i o n  energy. The ign i t ion  of com- 
b u s t i b l e  gases by f l y i n g  abrasion sparks and the incendivi ty  of heated passive 
pellets Shot i n t o  explosive gases have been examined by many invest igators(5,6,7) ;  
however, the r e l a t i v e  motion between p a r t i c l e s  and environment complicates the 
ana lys i s  and in te rpre ta t ion .  I n  the present  study, s i n g l e  micron size magnesium 
p a r t i c l e s  were r a d i a t i v e l y  heated while suspended i n  quiescent cold environmente 
of oxygen, a i r ,  He-oxygen, and methane-air mixtures, and the ign i t ion  and incen- 
dive mechanisms of the  p a r t i c l e s  were examined. 

EXPERWNPAL APPARATUS AND PROCEDURE 

Figure 1 Shows a schematic of the experimental apparatus.  The laser used a 
1.3-cm-diameter neodymium-doped g l a s s  rod and had a pulse durat ion of about 0.9 
millisecond. The l a s e r  beam was collimated by a simple 17-cm-focal-length convex 
l e n s  posit ioned 9.5 cm from the  magnesium p a r t i c l e  suspended i n  the center  of the 
l e v i t a t i o n  device. Devices of this nature have been used by other  investigators.@) 
The l e v i t a t o r  Consisted of four 0.3-cm-diameter by 8-cm-long v e r t i c a l l y  mounted 
metal rods which formed a 1.4-cm square. The rod ends vere supported by two te f lon  
insu la t ing  disks;  a l t e r n a t e  rods were connected together and t o  a 200- t o  1500-volt 
AC supply. 
bottom t e f l o n  disks  and insulated from the rods were connected t o  a DC source of 
100 to  1000 vol t s .  
a c e n t r a l l y  located cavi ty  i n  the bottom metal disk Yere dispersed i n  the apparatus 
by charging with a high-voltage pulse.  
tured i n  the l e v i t a t i o n  apparatus and retained along the c e n t r a l  v e r t i c a l  a x i s  of 
the  device by the r o t a t i n g  e l e c t r i c  f i e l d .  

Two metel c i r c u l a r  p l a t e s  a t tached t o  the  inner face of the  top  and 

I n  prac t ice  severa l  milligrams of the magnesium dus t  placed i n  

A few of  t h e  sca t te red  p a r t i c l e s  were cap- 

A l l  p a r t i c l e s  bu t  one were r e a d i l y  eliminated by varying the AC and DC 
potent ia l s ;  the  s ing le  remaining p a r t i c l e  W ~ S  then posit ioned i n  l i n e  v i t h  the 
laser beam and its s i z e  determined by use of  a microscope. 
contained i n  a transparent ghss chamber 6 x 6 x 10 cm having t w o  vents for use 
with flammable mixtures. 
(99 percent pure) ranging i n  s ize  from 28- t o  120-microns diameter were suspended 
and i r r a d i a t e d  i n  the g l a s s  chamber a f t e r  f i l l i n g  with dry gas mixtures of a i r ,  
helium-20 percent oxygen, pure oxygen, pure argon and stoichiometric methane-air. 
Streak and high-speed framing cameras were used t o  photograph the p a r t i c l e s  during 
i r r a d i a t i o n .  In  order t o  determine when p a r t i c l e  ign i t ion  occurred, a sample of 
the l a s e r  beam was picked up by t h e  photodiode (fig. 1 )  end amplified t o  energize 

The l e v i t a t o r  was 

In the experiments, s i n g l e  spher ica l  magnesium p a r t i c l e s  

* Underlined numbers i n  p r e n t h e s e s  r e f e r  to references a t  the end of the  pakr. 
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Fig. 1. - Apparatus for laser Ignition of elngle megneeium particlee. 
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a neon bulb whose focused image on the  camera f i lm cor re la ted  with t h e  l a s e r  p d 8 e .  
The l a s e r  pulse duration was measured by connecting the  photodiode output t o  an 
oscil loscope. Due t o  the c h s r a c t e r i s t i c  energy inhomogeneity i n  the l a s e r  beam 
cross-section, the magnesium p a r t i c l e  was reproducibly positioned i n  a small, 
r e l a t i v e l y  uniform sec t ion  of t he  l a s e r  beam and s 1-mm-diameter aper ture  i n  f r o n t  
of the l a s e r  energy monitor l imi t ed  the  measured energy t o  t h i s  uniform section. 
The monitor was a radiometer based on the ca lor imet r ic  pr inciple  and measured total 
pulse energy passing through the apparatus. 
f ixed and l a se r  beam energy was varied by changing the charge voltage on the l a s e r  
f l a s h  tube capacitor bank. 
t he  l a s e r  beam, t h e  laser energy was monitored between tests i n  the absence of a 
pa r t i c l e .  
function of the measured laser energy passing through t h e  aperture,  t he  aper ture  
c ross -sec t ion  projected back t o  the  p a r t i c l e  site, and t h e  pulse duration. 

The co l l imat ing  lens  pos i t ion  was 

Since the magnesium p a r t i c l e  blocked a small portion of 

The ca lcu la ted  laser power dens i t i e s  i r r a d i a t i n g  the p a r t i c l e  were a 

Schlieren photographs were taken during the  i r r a d i a t i o n  of s ingle  magnesium 

I n  the experimental arrangement shown i n  f igure 2, 
p a r t i c l e s  (60- and 120-micron diameter) suspended i n  air ,  pure argon and s toichio-  
metric methane-air mixtures. 
a ruby l a s e r  having an approximate 0.9 millisecond length pulse was convenient t o  
use f o r  t h e  rad ia t ion  hea t ing  source. 
l u s t r a t e d  glass  l i g h t  guide t o  r e f l e c t  a portion of t he  laser l i g h t  on the  fi lm 
f o r  time co r re l a t ion  of the i r r ad ia t ed  p a r t i c l e  with the l a s e r  pulse. 

It was a l s o  advantageous t o  use the il- 

. RESULTS AND DISCUSSIONS 

P a r t t c l e  Ign i t ion  

In  previous hot-$as i g n i t i o n  exper'iments of s ing le  magnesium p a r t i c l e  i n  a i r ,  
it w8s established that  gas temperatures of 6400 to 740W a r e  necessary f o r  igni t ion 
of p a r t i c l e s  ranging i n  diameter from 120 t o  20 microns, respectively($; the ob- 
served gas temperature increase  with decreasing p a r t i c l e  s i ze  was a t t r i b u t e d  t o  t h e  
increased heat loss per p a r t i c l e  surface a rea  with decreasing pa r t i c l e  diameter 
during the igni t ion process. 
surrounded by a co ld  gas;  therefore ,  higher p a r t i c l e  temperatures were necessary 
f o r  i gn i t i on  t o  compensate f o r  t h e  increased hea t  l o s ses  t o  the cold ambient a t -  
mosphere. 
r ad ia t ion  by a sho r t  pulse depend on t h e  p a r t i c l e  hea t  capacity, thus requi r ing  
t h a t  the ign i t i on  energy suppl ied  by the  laser increase with pa r t i c l e  s i z e .  

In  our experiments, t h e  p a r t i c l e  was i n i t i a l l y  

I n  addition, maximum temperatures a t t a i n e d  by a p a r t i c l e  during ir- 

Figure 3 is a streak photograph of s laser- igni ted,  84-micron-diameter mag- 
nesium pa r t i c l e  burning in a i r .  
t h i s  photograph, was f requent ly  observed and is  ascr ibed  t o  p re fe ren t i a l  burning 
of t he  pa r t i c l e .  I n  many cases  t h e  p a r t i c l e  was seen t o  fragmentize following 
ign i t ion .  
reported i n  the previous hot-gas ign i t i on  s tud ie s .  

W r t i c l e  s p i r a l i n g  during combustion, shown i n  

Burning l i f e t imes  of t he  p a r t i c l e s  were usual ly  much shorter  than 

Figure 4 is a p l o t  of our experimental data showing the laser beam power 
dens i ty  required t o  ign i t e  single magnesium p a r t i c l e s  suspended i n  various at- 
mospheres. A t  these c r i t i c a l  powers, i gn i t i on  always occurred near the end of 
t he  l a s e r  pulse. 
de lay  t i m e  could be shortened appreciably.  As expected, t h e  r ad ian t  power for  
i gn i t i on  increases with p a r t i c l e  s i z e  and with increased thermal  conductivity of 
the ambient gases (thermal conduct iv i ty  of helium is  approximately 5 times that  
of a i r ) .  The s i m i l a r  c r i t i c a l  r ad ian t  powers required for p a r t i c l e  i gn i t i on  f o r  
a i r  and pure oxygen agree q u a l i t a t i v e l y  with results of the hot-gas i gn i t i on  
experiments (I_) i n  which i g n i t i o n  temperature was found t o  be approximately equal 
for magnesium pa r t i c l e s  i n  a i r  and pure oxygen; these findings suggest t h a t  oxygen 
d i f fus ion  is not a con t ro l l i ng  f ac to r  i n  t h e  ign i t i on  mechanism. 

A s  l a s e r  power was increased above the c r i t i c a l  value, i gn i t i on  
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Fig. 2. - Apparatus for schlieren study. 
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In  addi t iona l  experiments, s ing le  p a r t i c l e s  (60-  and 84-micron diameter) sus- 
pended i n  pure argon and i l luminated by a long-duration photoflash l i g h t  were ir- 
r ad ia t ed  by laser powers equal  t o  t h a t  previously requi red  f o r  ign i t ion  i n  a i r .  
The photoflash l i g h t  revealed the  r ap id  growth of a cloud surrounding t h e  particle 
(presumably, condensed m e t a l  vapors) near the  termination of the  l a s e r  pulse.  The 
p a r t i c l e  was usual ly  s t i l l  discernable within the cloud. 

A sequence of s ch l i e ren  photographs of a 60-micron-diameter p a r t i c l e  i r r a -  
d i a t ed  i n  pure argon is shown i n  f igu re  5 ;  the  l a s e r  power dens i ty  was again j u s t  
s u f f i c i e n t  t o  ign i t e  a similar s i z e  p a r t i c l e  i n  a i r .  The expanding sch l ie ren  
image is considered t o  be mainly due t o  the  expelled ho t  metal vapor, and is  first 
v i s i b l e  near t he  mid-point of  the  l a s e r  pulse. A graph of the  sch l ie ren  growth 
r a t e  for an  i r r ad ia t ed  p a r t i c l e  suspended in  argon and i n  a i r  is shown i n  figure 6 .  
The increased growth of the sch l ie ren  taken i n  a i r  i s  ind ica t ive  of the  magnesium- 
a i r  r eac t ion  process. 

In  previous inves t iga t ions  of  magnesium p a r t i c l e  i gn i t i on  by hot  gas, t he  
maximum required gas temperature was 740OC and i n  the  ign i t i on  of magnesium ribbon 
by r e s i s t ance  heating,(g) m e t a l  temperatures were estimated t o  be i n  the  v i c i n i t y  
of t h e  m e t a l  melting point (621Oc) during the  onse t  of ign i t ion .  Our experiments 
suggest that ign i t ion  of  a magnesium particle by a 0.9 msec intense r ad ia t ion  , 
pulse occurs i n  the  vapor phase. During the  r ad ia t ion  pulse the  p a r t i c l e ' s  sur- 
face rises t o  the bo i l ing  poin t ,  t h e  p a r t i c l e  vaporizes, and ign i t ion  follows. 
For c r i t i c a l  r ad ian t  powers, vaporization begins near t he  mid-point of t he  laser 
pulse and ign i t ion  occurs i n  t h e  proximity of t h e  pulse end. 

Table I shows t h e  average burning l i f e t imes  of magnesium particles igni ted  by 
c r i t i c a l  l a s e r  energies a s  compared t o  hot-gas ign i t i on  experiments. The shor te r  
lifetimes fo r  the laser-induced ign i t ions  a r e  ascr ibed  t o  p a r t i c l e  vaporization 
p r io r  t o  ign i t ion  and d i s in t eg ra t ion  of  t he  particle during combustion. 

TABLE I 

Average burning l i f e t ime  of l a se r - ign i t ed  magnesium 
particles i n  a i r  compared with hot-gas ign i t i on  

Diameter, Lifetime, msec 
microns Laser ign i ted  Hot gas ign i t ed  

120 5 -0 16.8 
84 2.4 6.2 (80 micron) 
60 -9  1.8 (50 micron) 
28 .1 

For t he  r e l a t i v e l y  low laser r ad ian t  power dens i t i e s  used i n  our experiments 
and large thermal d i f f u s i v i t y  of t h e  particle, t he  p a r t i c l e  has a r e l a t i v e l y  small 
temperature gradient.  A rough approximation of t h i s  grad ien t  can be obtained from 
the  relationshipEFi, = hdT/dr, where e. is t h e  surface coe f f i c i en t  of absorp t iv i ty  
(assumed t o  have a value o f  0.3), Eo is  the  laser beam power density,  A i s  t he  
m e t a l  thermal conductivity having a n  average value of 1 Joule/cm sec OC, T is  the  
temperature, and r is  the  particle radius.  
d i f fe rence  between t h e  p a r t i c l e  surface and center  would be of t he  order of 9 t o  
1 8 0 0 ~  for t h e  28 t o  120 micron p a r t i c l e  respec t ive ly  using the data of f igure  4 
for  t he  a i r  environment. For a r ad ian t ly  heated magnesium p a r t i c l e  suspended in  
a n  i n e r t  atmosphere, t he  time fo r  the p a r t i c l e  sur face  t o  begin bo i l ing  and the 
quant i ty  of metal vaporized during the  pulse can be r ead i ly  ca lcu la ted  i f  t he  
following assumptions a r e  made. 

Worn t h i s  re la t ionship  the  temperature 



F i g .  5 .  - Schlieren records of a beer irradiated 60 micron particle 

in pure argon, 0.13 meec between frames. 
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(1) The rad ian t  f l ux  absorbed by the  p a r t i c l e  is  equal ly  d i s t r i b u t e d  over t he  
e n t i r e  p a r t i c l e  surface.  
given an  average value of 0.3 -- t h e  thickness of oxide coating on the  p a r t i c l e  is  
less than severa l  hundred Angstroms and has l i t t l e  e f f e c t  on E or the  hea t  
conduction. 

The p a r t i c l e  surface coe f f i c i en t  of abso rp t iv i ty  ( 6 )  is 

(2) 

(3 )  

The temperature d i s t r i b u t i o n  within the  p a r t i c l e  is  uniform. 

Radiative hea t  l o s ses  and heat t r a n s f e r  t o  the surrounding gases can be 
neglected. 

Using these assumptions, t he  energy balance equation fo r  t h e  p a r t i c l e  can then 
be m i t t e n :  

where Eo is the  r ad ian t  power dens i ty  i n  joules/cm2sec, r is  t h e  p a r t i c l e  rad ius  
i n  c m ,  t b  i s  t he  time i n  seconds for the  r t icle t o  reach the  bo i l ing  point,  p 
the  average pa r t i c l e  dens i ty  = 1.7 gms/crnT C the average p a r t i c l e  s p e c i f i c  
hea t  = 1.3 joules/cm OC, AT the  temperature i i f f e rence  from ambient t o  the metal's 
bo i l ing  point ( l l O O ° C ) ,  and HM i s  the  heat of fusion of t he  m e t a l  (380 joules/@). 
The reduction i n  p a r t i c l e  s i z e  due t o  evaporation can be expressed by: 

where I,, is the hea t  of vaporization (5500 Joules/gm) and t is  the  t i m e  remaining 
i n  t h e  l a s e r  pulse a f t e r  the part ' icle surface reaches the  bo i l ing  poin t .  

Using these equations, t ab l e  I1 shows the  ca lcu la ted  times for p a r t i c l e s  t o  
reach the bo i l ing  point and the  f i n a l  p a r t i c l e  s i z e  f o r  c r i t i c a l  laser powers ob- 
ta ined  from f igure  4 f o r  a i r  environments. 

TABU I1 

Boiling times and f i n a l  p a r t i c l e  s i z e  fo r  
laser i r r a d i a t i o n  a t  c r i t i c a l  power d e n s i t i e s  

Pa r t i c l e  
diameter, Time t o  bo i l ing  F ina l  p a r t i c l e  
microns point,  msec diameter, microns 

28 
60 
84 

120 

0.52 
.62 

, .65 - 70 

26 
56 
80 

, u.6 

The ca lcu la ted  times t o  reach the  bo i l ing  point fo r  t he  small p a r t i c l e s  ( t ab le  11) 
are approximately 20 percent l a r g e r  than our experimental r e s u l t s ;  the increased 
ca lcu la ted  values fo r  t h e  larger p a r t i c l e s  are probably due t o  our assumption of a 
uniform temperature within t h e  pa r t i c l e .  The small reduction in p a r t i c l e  s i z e  due 
t o  vaporization p r io r  t o  ign i t i on  accounts on ly  p a r t i a l l y  for t h e  sho r t  burning 
lifetimes noted i n  our experiments. In  addi t ion ,  t he  poss ib le  absorption of laser 
energy by the vaporized metal would be  e f f e c t i v e  i n  reducing the p a r t i c l e  absorp- 
t i v i t y  and thereby l e s sen  the  vaporization rate.  Results of t h i s  ana lys i s  suggest 
t h a t  p a r t i c l e  d i s in t eg ra t ion  i s  t h e  most s ign i f i can t  f a c t o r  i n  decreasing the  
burning lifetimes. 

1 
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I Incendivi t y  

I Figure 7 shows a p lo t  of the  c r i t i c a l  r ad ian t  power dens i ty  required f o r  t h e  
incendive ign i t i on  of stoichiometric methane-air mixtures by i r r a d i a t i v e l y  heated 
s ing le  magnesium p a r t i c l e s .  For comparison purposes, the curve of p a r t i c l e  ig-  
n i t i o n  i n  a i r  from f igu re  4 i s  a l s o  included. It  is s i g n i f i c a n t  to  note t h a t  t h e  
120-micron-diameter p a r t i c l e  requi res  l e s s  r ad ian t  power fo r  incendive igni t ion 
than for p a r t i c l e  i g n i t i o n  i n  a i r ,  whereas c r i t i c a l  r ad ian t  power f o r  the 84- and 
60-micron pa r t i c l e s  appear t o  be s i m i l a r  to t h e  values obtained i n  a i r ,  and the  
smaller 50- and 28-micron p a r t i c l e s  need g rea t e r  r ad ian t  power for incendivity 
than f o r  p a r t i c l e  i gn i t i on .  This l a t t e r  observation indicates  t h a t  the smaller 
p a r t i c l e s  can be burned i n  a flammable environment without i gn i t i ng  the environment. 

, 

1 

Table I11 lists the energy re leased  during combustion of magnesium p a r t i c l e s  
and the  computed r ad ian t  energy absorbed by  the  particles during the  laser pulse 
using equations 1 and 2 and the  c r i t i c a l  r ad ian t  powers for incendlvity shown i n  
f igu re  7. 
the methane-air mixture when i r r ad ia t ed  with r ad ian t  power d e n s i t i e s  as high a s  
270 watts/cm2, is a l s o  l i s t e d  i n  t h i s  t a b l e  f o r  comparieon purposes. 

Information f o r  a 20-micron-diameter pa r t i c l e ,  which d id  not i g n i t e  

TABLE I11 

Energy r e l eased  during combustion and r ad ian t  energy 
absorbed by magnesium p a r t i c l e s  during i r r a d i a t i o n  

Pa r t i c l e  
diameter, Energy of combustion , Energy absorption, 
microns m i l l i  joules m i  lli joule  s 

120 36.7 2.7 
84 12.6 1.3 
60 4.6 .5 
50 2.7 .4 
28 .5 .1 
20 .16 05 

1 

A l l  t h e  p a r t i c l e s  l i s t e d  i n  t a b l e  I11 except f o r  t he  28 and 20 micron, heve 
grea te r  absorbed energies than  t h e  reported (0.25 mJ) minimum spark ign i t i on  
energy f o r  stoichiometric methene-air mixtures. However, gas i gn i t i on  by 
r e l a t i v e l y  slowly heated hot  bodies should requi re  considerably more energy than 
by short  duration sparks. Nevertheless, since the 120-micron p r t i c l e  requires 
much less radiant  f lux for incendive igni t ion than  for p a r t i c l e  i gn i t i on  i n  a i r ,  
then this p a r t i c l e  apparent ly  i g n i t e s  the methane-air mixture by hot-body 
mechanisms. Therefore, neglecting any mgnesium-0 reaction, t he  minimum i g -  
n i t i on  energy of t h e  gas mixture by small  ho t  p a r t f c l e s  (11OOOC) should be of 
t he  order of 3 mJ. 
i g n i t e  the gas mixture s ince the energy required for incendive ign i t i on  is a s  
g rea t  or grea te r  than that requi red  for p a r t i c l e  igni t ion.  
r ad ian t  power density requi red  for incendivity ign i t i on  f o r  t he  60-micron p a r t i c l e  
shown i n  f i gu re  7 is ev iden t ly  due t o  an in t e rac t ion  of p a r t i c l e  i gn i t i on  and 
methane-air ign i t i on  processes.  The 50- and 28-micron p a r t i c l e s  require energies 
i n  excess of p a r t i c l e  i g n i t i o n  i n  order to shorten t h e i r  burning l i f e t imes  and 
thereby enhance the incendive process. The combustion and absorbed energy ca l -  
cu la ted  for the 20-micron particle is seen to be  less than  the  epark i gn i t i on  
requirements , therefore non ign i t ab i l i t y  by t h i s  p a r t i c l e  size is not surpr is ing.  
Rae(1) estimated the minimum mass of r ap id ly  moving and burning magnesium p a r t i c l e s  
capable of i gn i t i ng  a methane-eir mixture to  be 1.0 microgram which corresponds t o  
a 105-micron-diameter sphere. 
minimum particle s i z e  used in our experiments and iuustrates the probable e f f e c t  

1 
The smaller p a r t i c l e s  apparently i g n i t e  first then i n  t u r n  

I The drop i n  the 

I 
This value is almost fourfold greater than the 
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Fig.  7. - Laser power dtnclity required far mingle magaeeium perticle 

t o  igntte s t o i c ~ i ~ t r l c  ntethene-eir mixture. 
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of particle motion and burning l i fe t ime on incendive eff ic iency.  
p a r t i c l e  s i z e  and motion on hot-body igni t ion  i s  demonstrated i n  work by Si lver(?)  
and ~ s t e r s o n ( 6 )  who igni ted  gas  mixtures with heated platinum and quartz spheres; 
t h e i r  r e s u l t s  showed that i g n i t i o n  temperature of the spheres increased w i t h  de- 
creasing sphere diameter and increasing sphere ve loc i ty  through t h e  f u e l  mixture. 

The e f f e c t  of 

Figure 8 show a sequence of sch l ie ren  photographs obtained during the ir- 
radia t ion  of a 60-micron-diameter magnesium p a r t i c l e  swpended i n  a stoichiometric 
methane-air m i x t u r e .  
during the  i r r a d i a t i o n  of a e ingle  60-micron and a 120-micron-diameter p a r t i c l e  
using the rad ian t  power d e n s i t y  ( c r i t i c a l )  necessary for incendive ign i t ion  of 
stoichiometric methane-air mixtures. 
particle irradiated by c r i t i c a l  and twice-cr i t ica l  rad ian t  power densi t ies .  The 
r e s u l t s  of these s tud ies  suggest t h a t  the incendive mechanism can be described a s  
a three-stage process; the first s tage  being an extremely rapid growth of a 
spher ica l  envelope surrounding the p a r t i c l e  r e s u l t i n g  from the  expending hot metal 
vapors and magnesium-methane-air reaction; the second stage is character ized by  a 
much slouer growth r a t e  and is considered t o  r e s u l t  from the  continued pre- 
ign i t ion  process of the  methflne-air react ion;  the t h i r d  s tage  is tne methane- 
a i r  combustion f r o n t  and corresponds t o  an expanding f r 6 n t  traveling a t  a constant 
veloci ty .  
and particle s ize .  Stoichiometric methane-air flame epeeds should be about 
270 cmlsec. 
micron p a r t i c l e  i r r a d i a t e d  by twice c r i t i c a l  power shown i n  figure 10. 
ign i t ion  experiments of methane-air systems by Ashman@) showed a similar 
pat tern,  a decreased flame speed wfth a decrease i n  wire temperature. H i s  
results a l s o  indicated t h a t  an exothetmic reac t ion  occurred i n  the methane-air 
pre- igni t ion period. 
methane-air combustion f r o n t  var ies  from about 3 to  5 nun, t h i s  is about one-half 
the  dis tance of corresponding zones as measured by Ashman. 

Figure 9 is a p lo t  of the growth of the sch l ie ren  image 

Figure 10 is a s imi la r  p l o t  f o r  a 120-micron 

The r a t e  of growth of a l l  stage@ is  observed t o  depend on laser energy 

This Corresponds approximately t o  the value obtained f o r  the 120- 
Hot-wire 

The d is tance  t raveled by the wave to  the beginning of the  
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Fig. 8. - Schlieren record of laser irradiated 60 micron particle 

in stoichiometric methane-air mixture, 0.27 maec between frames. 
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